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ABSTRACT

The NCEP CFSv2 ensemble reforecasts initialized with different land surface analyses for the period

of 1979–2010 have been conducted to assess the effect of uncertainty in land initial states on surface air

temperature prediction. The two observation-based land initial states are adapted from the NCEP CFS

Reanalysis (CFSR) and the NASAGLDAS-2 analysis; atmosphere, ocean, and ice initial states are identical

for both reforecasts. This identical-twin experiment confirms that the prediction skill of surface air temper-

ature is sensitive to the uncertainty of land initial states, especially in soil moisture and snow cover. There is no

distinct characteristic that determines which set of the reforecasts performs better. Rather, the better per-

former varies with the lead week and location for each season. Estimates of soil moisture between the two

land initial states are significantly different with an apparent north–south contrast for almost all seasons,

causing predicted surface air temperature discrepancies between the two sets of reforecasts, particularly

in regions where the magnitude of initial soil moisture difference lies in the top quintile. In boreal spring,

inconsistency of snow cover between the two land initial states also plays a critical role in enhancing the

discrepancy of predicted surface air temperature from week 5 to week 8. Our results suggest that a reduction

of the uncertainty in land surface properties among the current land surface analyses will be beneficial to

improving the prediction skill of surface air temperature on subseasonal time scales. Implications of amultiple

land surface analysis ensemble are also discussed.

KEYWORDS: Atmosphere-land interaction; Snow cover; Soil moisture; Surface temperature; Forecast

verification/skill; Coupled models

1. Introduction

Useful predictability of deterministic weather forecasts

is usually no more than 2 weeks, limited by the sensitivity

to the atmospheric initial state, while longermemory from

ocean heat content plays a dominant role in the climate

predictability on seasonal and longer time scales (e.g.,

Lorenz 1963, 1975; Shukla 1985; Lorenz 1993). There is a

gap between the two time scales of weather and climate

predictions, where inertia in the land surface, such as soil

moisture, snow, and vegetation states can provide a source

of predictability (Dirmeyer et al. 2015, 2018b).

Land surface memory relevant to subseasonal to

seasonal prediction is typically defined based on anom-

alies of soil moisture. Since soil moisture anomalies in

nature can persist from a week up to two months or

more (Vinnikov et al. 1996; Entin et al. 2000;Mahanama
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and Koster 2003; Seneviratne et al. 2006), the influence

of soil moisture anomalies on atmospheric variability

(viz., surface air temperature and precipitation) has been

explored using climate models in many previous studies

(e.g., Shukla andMintz 1982; Delworth andManabe 1989;

Hong and Kalnay 2000; Douville et al. 2001; Wu and

Dickinson 2004; Koster et al. 2004, 2006; Guo et al. 2006;

Dirmeyer and Halder 2016, 2017; Dirmeyer et al. 2018b;

Halder et al. 2018). Soil moisture anomalies modulate

near-surface air temperature: positive moisture anom-

alies in soil can give rise to more evaporation, which

leads to increased evaporative cooling of the surface and

decreased sensible heating of the overlying air, and vice

versa. Therefore, positive (negative) soil moisture anoma-

lies result in cooling (warming) of the lower troposphere,

i.e., negative feedback between the soil moisture anomaly

and air temperature tendency (Fischer et al. 2007; Koster

et al. 2009a).

If a coupled forecast model is able to reasonably cap-

ture the land–atmosphere coupling in nature with realis-

tically initialized land surface (soil moisture) states, the

contribution of soil moisture memory to enhanced pre-

dictability of the atmospheric system might be realized.

Consequently, studies in the past have attempted to

quantify the impact of realistic soil moisture initializa-

tion on subseasonal and seasonal prediction skill (e.g.,

Fennessy and Shukla 1999; Dirmeyer 2000; Douville

2004, 2010; Koster et al. 2010, 2011; Guo et al. 2011; van

den Hurk et al. 2012; Materia et al. 2014; Prodhomme

et al. 2016; Dirmeyer and Halder 2016, 2017; Dirmeyer

et al. 2018b; Halder et al. 2018). Model fidelity in rep-

resenting coupled land–atmosphere processes is also

necessary, including proper simulation of variability,

covariability, sensitivity, and critical transitions in the chain

of processes linking land surface states to surface fluxes,

near-surface atmospheric states, boundary layer charac-

teristics, cloud formation, and precipitation (Dirmeyer and

Halder 2017; Santanello et al. 2018).

Realistic soil moisture initialization has been standard

practice in coupled climate forecasts systems for about a

decade (e.g., Vitart et al. 2008). Nonetheless, land sur-

face initial states in many current weather and climate

forecast systems are far from perfect (Vitart et al. 2017),

mainly due to the lack of operational near-real-time

monitoring for the land surface unlike atmosphere and

ocean surface. Satellite data assimilation shows great

promise to address this shortcoming (Carrera et al. 2015;

Al-Yaari et al. 2017; Reichle et al. 2019). A number of

recent studies have investigated weather and climate

models’ ability to accurately represent various aspects

of land–atmosphere coupled processes in nature using

much improved datasets of land surface states in terms

of their spatial and temporal coverage and quality (e.g.,

Trigo et al. 2015; Levine et al. 2016; Dirmeyer et al.

2016, 2018a).

In this paper, we introduce ‘‘identical twin’’ sets of

32-yr (1979–2010) reforecasts initialized with land

initial states based on two independent observation-

based land surface analyses but with same initial states

for other components such as atmosphere, ocean and

sea ice. One land surface analysis is from the National

Centers for Environment Prediction (NCEP) Coupled

Forecast System (CFS) Reanalysis (CFSR; Saha et al.

2010) and the other is the National Aeronautics and

Space Administration (NASA) Global Land Data

Assimilation System Version 2.0 (GLDAS-2) analysis

(Rodell et al. 2004; Rodell and Beaudoing 2015; Rui

and Beaudoing 2015). Using these identical-twin sets

of CFSv2 reforecasts, we investigate the uncertainty

of soil moisture states between the two land surface

analyses for 32 years (1979–2010) and quantify its

impact on prediction skill and predictability of near-

surface air temperature on subseasonal time scales.

We compare two different ‘‘realistic’’ land initializa-

tions in this study, whereas previous studies have

compared initialization to more idealized (e.g., cli-

matological) land initial conditions. This study sheds

light on how uncertainties in land initialization may

affect forecast skill. In our companion paper, we

specifically examine sensitivity of U.S. drought pre-

diction skill to land initial states (Shin et al. 2020).

Section 2 describes the coupled model used in this

study and the identical-twin experiment design in details.

Evaluation of 2-m air temperature prediction skill, soil

moisture uncertainty between the two land surface an-

alyses, and its influence on 2-m air temperature predic-

tion as a function of lead time are presented in sections 3

and 4, respectively. A summary and discussion are given

in section 5.

2. Model and identical-twin experiments

CFS version 2 (CFSv2) is a fully coupled dynamical

climate system that has been used for operational sea-

sonal prediction at NCEP (Saha et al. 2014). The at-

mospheric model of the CFSv2 is a lower resolution

version of the Global Forecast System (GFS), which

has a spectral horizontal resolution of T126 (equivalent

to about 18 grid spacing) and 64 vertical levels. The

oceanic component is the Geophysical Fluid Dynamics

Laboratory (GFDL) Modular Ocean Model version 4

(MOM4; Griffies et al. 2004). It has 40 vertical levels

and a 0.58 horizontal grid spacing poleward of 308 lati-
tude, increasing to 0.258 within 108 latitude of the

equator. The sea ice component is a three-layer global

interactive dynamical sea ice model with predicted
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fractional ice cover and thickness (Winton 2000) while

the land surface component is the Noah land surface

model (LSM) version 2.7.1 (Ek et al. 2003) of four soil

layers with interfaces at depths of 0.1, 0.4, 1.0, and 2.0m.

The version of the model used in this study follows the

revisions described in Huang et al. (2015).

The Center for Ocean–Land–Atmosphere Studies

(COLA) has recently produced a 60-yr (1958–2017) set

of CFSv2 ensemble reforecasts of 12-month duration ini-

tialized at the beginning of January, April, July, and

October (Huang et al. 2017, 2019). For the whole 60-yr

period, the ocean initial states came from the instanta-

neous restart files of the ECMWF Ocean Reanalysis

System 4 (ORA-S4) with a set of five-member en-

semble assimilation runs (Balmaseda et al. 2013).

After 1979, the atmosphere, land and sea ice initial

states were taken from the restart files of the CFSR.

Twenty-member ensemble reforecasts were generated

by matching each of the five ocean initial states at

0000 UTC on the first of each initial month with the

atmospheric and land initial states at 0000 UTC of the

first four days, but the same sea ice initial state at

0000 UTC on the first was used for all ensemble

members. More details of the initialization procedure

for the whole 60-yr period can be found in Huang et al.

(2017, 2019), which also examined the prediction skill

and predictability of ENSO for 1958–2014 and U.S.

seasonal precipitation for 1958–2017, respectively.

As a companion experiment to the original 60-yr CFSv2

reforecasts (1958–2017) with respect to land initialization,

wemore recently completed a set of CFSv2 reforecasts for

1979–2010 using land initial states based on the NASA

GLDAS-2 dataset, which are referred to as the GLDAS

reforecasts. The 20-member ensembleGLDAS reforecasts

initialized in early January, April, July, and October

have been conducted, and the integration length of each

is 12 months. This new set of the GLDAS reforecasts

complements the 60-yr CFSv2 reforecasts in two ways.

For the set of 60-yr CFSv2 reforecasts, the land initial

states were adapted from NASA GLDAS-2 analysis

before 1979 and NCEP CFSR after 1979, respectively.

Therefore, its pre-1979 runs and the new GLDAS runs

can be combined into a continuous set of reforecasts for

a set of 53-yr (1958–2010) reforecasts with GLDAS land

initialization. More importantly, the original CFSv2 re-

forecasts initialized with NCEPCFSR land states for the

common period of 1979–2010 (32 years) have the same

initial conditions as the new GLDAS reforecasts ex-

cept for the land states (hereafter, they are referred to

as the CFSR reforecasts), forming a pair of identical-

twin experiments.

The Noah LSM (Ek et al. 2003), having the same ver-

tical soil layers (0–10, 10–40, 40–100, and 100–200 cm) as

in CFSv2, was used to generate both the CFSR land

surface analysis at T126 spectral spatial resolution (;18)
and theGLDAS-2.0 data at 18 3 18 spatial resolution. For
the CFSR land surface analyses, the Noah LSM was

modified to have the identical setup as in the fully coupled

CFS-Noah LSM, which has 13-category SiB vegeta-

tion classes, 9-category Zobler soil types, and asso-

ciated vegetation and soil parameters (cf. Saha et al.

2010). The same modified Noah LSM was used to pre-

pare the GLDAS-2.0 data, but utilizing the 20-category

modified IGBP-MODIS vegetation classes and the

STATSGO-FAO 16-category soil texture classes (Rui

and Beaudoing 2015; H. Beaudoing 2016, personal

communication). The state variables used for initiali-

zation of the land surface in CFSv2 were soil moisture

and temperature at the standard LSM model layers,

snow liquid water equivalent, skin temperature, and

canopy water storage (see ftp://ftp.emc.ncep.noaa.gov/

mmb/gcp/ldas/noahlsm/ver_2.7.1). For each day of our

model experiments, the state variables were inter-

polated from their native grid to the T126 reduced

Gaussian grid of the CFSv2 model using the nearest

neighbor approach.

We focus on ensemble mean prediction in this study.

Operational forecasts are usually based on the ensemble

mean, so it is more representative of how operational

forecasts would be affected by differences in land ini-

tialization. Any variables from the identical-twin ex-

periments (i.e., the CFSR reforecasts and GLDAS

reforecasts) indicate their own 20-member ensemble

mean predictions in the remainder of the paper. We will

also introduce all-inclusive 40-member ensemble mean

predictions in the following section, which are referred

to as ‘‘Grand Ensemble (GE) reforecasts.’’

For verification, NOAA Climate Prediction Center

(CPC) 0.58 3 0.58 global daily 2-m air tempera-

ture is used from 1 January 1979 to 31 December

2010, which is provided by the NOAA/OAR/ESRL

PSD, Boulder, Colorado, from their website at https://

www.esrl.noaa.gov/psd/. These data were built upon a

gridded monthly climatology of CRU (Climate Research

Unit, University of East Anglia, United Kingdom), which

maybe replacedwithPRISMover regionswherePRISM is

available.A gridded analysis of temperature anomalieswas

derived by interpolating GTS (Global Telecommunication

System) station values through the Shepard algorithm

that is a distance-weight technique with directional

correction. Finally, gridded analyses of total tempera-

ture were computed by adding the anomaly to the CRU

climatology (ftp://ftp.cpc.ncep.noaa.gov/precip/PEOPLE/

wd52ws/global_temp/CPC-GLOBAL-T.pdf). More de-

tails about the data, including maps of typical station

distribution, can be found there. As one may expect,
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these verification data are far from ideal and, therefore,

are associated with some uncertainty.

3. Evaluation of 2-m air temperature prediction
skill in the identical-twin experiments

We validate prediction skill of weekly mean 2-m

air temperature in both the CFSR and GLDAS

reforecasts over 32 years (1979–2010). Figures 1–4

display global anomaly correlation maps of 2-m air

temperature from week 1 to week 4 for the reforecasts

starting from early January, April, July, and October,

respectively. Note that week 1 covers from the fourth

to tenth of each initial month, and week 2 represents

7-day mean from the eleventh to the eighteenth of

each month, and so on. In both the CFSR and GLDAS

FIG. 1. Anomaly correlation coefficient maps of weekly mean 2-m air temperature for 1979–2010 from (a) week 1 through (d) week 4 in

(left) the CFSR reforecasts, (center) the GLDAS reforecasts, and (right) theGE reforecasts with January initial conditions (ICs). Dashed

curves denote 95% confidence level. See the text for more details about the CFSR, GLDAS, and GE reforecasts.
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reforecasts with January initial conditions (ICs), the

correlation skill at week 1 is good with statistical sig-

nificance over almost the entire globe, yet, as ex-

pected, the skill degrades quickly with increasing lead

time (left and center columns of Fig. 1). At weeks 3

and 4, the skill in both sets of reforecasts decreases

relatively faster over Europe, Russia, the southern United

States, northwestern Africa, and Australia (left and center

columns of Figs. 1c,d).

For longer lead forecasts, a skill discrepancy between

the CFSR and GLDAS reforecasts is apparent, espe-

cially at week 4. The CFSR reforecasts show higher skill

over the Middle East than the GLDAS reforecasts,

whereas the latter displays higher skill than the former

over the regions such as Canada and the northern

United States (including Alaska), northern China and

Mongolia, eastern Russia, and eastern Australia (left

and center columns of Fig. 1d). It is interesting to note

FIG. 2. As in Fig. 1, but for April ICs.
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that over those regions where the identical-twin exper-

iments exhibit quite different skill, the spatial distribu-

tion of prediction skill in the GE reforecasts tends to be

very close to the set of reforecasts that has the better

skill (right column of Fig. 1).

General features seen in Fig. 1 are also commonly

found in the identical-twin experiments starting from

early April, July, and October (Figs. 2–4). That is, cor-

relation skill of both the CFSR and GLDAS reforecasts

is reasonably good up to week 2 over most of the globe

and then continuously decreases, although the rate of

degradation varies by season and location for each set of

reforecasts. Overall, skill in the reforecasts with July and

October ICs decline faster at weeks 3 and 4 with smaller

spatial coverage of statistical significance (Figs. 3c,d and

4c,d), compared to the other seasons.

For each starting month, we highlight some areas

where a skill discrepancy between the CFSR andGLDAS

FIG. 3. As in Fig. 1, but for July ICs.
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reforecasts is largest. At weeks 3 and 4 of the April IC

runs, the GLDAS reforecasts perform better than the

CFSR ones over southern Africa and Canadian Shield,

but it is opposite over Kazakhstan and northern Russia

(left and center columns of Figs. 2c,d). For the July IC

runs, the CFSR reforecasts show higher skill at week 3

over the western United States, Alaska, and northeastern

Russia whereas the GLDAS reforecasts have higher skill

over the northern United States and central Africa (left

and center columns of Fig. 3c). In boreal fall, the CFSR

reforecasts still show a statistically significant correlation

skill at week 4 over northeastern Europe, Mongolia, and

northern China in contrast to the GLDAS reforecasts,

whereas the latter displays a better skill over Alaska and

Canada than the former (left and center columns of

Fig. 4d). It is noteworthy that over almost all of North

America, the correlation of 2-m air temperature in the

CFSR reforecasts is statistically insignificant at week 3 and

FIG. 4. As in Fig. 1, but for October ICs.
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becomes negative at week 4, showing much faster degra-

dation of skill than the GLDAS reforecasts, although skill

in the latter is also not good at week 4.

It is clearly seen that the better performer between the

CFSR and GLDAS reforecasts varies area by area and

changes by season even in the same region. However,

predictive skill in the GE reforecasts always tends to be

as good as that of the better performer in regions

where a skill difference between the two sets of refor-

ecasts is noticeable, as we described above for each

starting month (Figs. 2–4). To substantiate this argu-

ment, we focus further on North America at week 3 for

all seasons (Fig. S1 in the online supplemental material).

The CFSR reforecasts are the better performer over the

southeastern United States and the northern Great

Plains for January ICs, the Midwest and Alaska for

April ICs, and the western U.S. coastal region and the

southwestern and southeastern United States for July

ICs. On the other hand, the GLDAS reforecasts show

better skill than the CFSR reforecasts, for example, over

the southern Great Plains and the southwestern United

States for January ICs, most of Canada and the south-

eastern United States for April ICs, the northern United

States for July ICs, and almost all of North America for

October ICs. It is also confirmed that predictive skill

in the GE reforecasts looks nearly equivalent to that

of the better performer over the North America al-

though the better performer changes in region and

season (Fig. S1).

For more quantitative comparison, we display per-

centages of the land grid cells with statistically significant

skill over the globe (608S–708N) fromweek 1 to week 8 in

Fig. 5. Both the CFSR and GLDAS reforecasts have

significant skill over more than 90% of the global land

grid cells at week 1 for all four ICs (orange and blue bars

in Fig. 5), and greater than about 80% at week 2 for

January and April ICs and about 70% at week 2 for July

and October ICs, which are far above the percentage

from a persistence forecast (black curves in Fig. 5).

Here, we define a persistence forecast as the anomaly of

the initial states continued throughout the forecast lead

time. For January ICs, percentages gradually decrease

as lead time increases and become below 30% from

week 5, but at least about 10% above that of the

persistence forecast (Fig. 5a). Percentages for April

ICs are below 30% from week 4 and an extra skill

relative to the persistence forecast is marginal from

week 7 for both the CFSR and GLDAS reforecasts

FIG. 5. Percentages of the land grid cells with statistically significant skill of 2-m air temperature over the globe (608S–708N) for

(a) January ICs, (b) April ICs, (c) July ICs, and (d) October ICs. Blue (orange) bars are for the CFSR (GLDAS) reforecasts and gray

(yellow) bars are for the GE (GE_reduced) reforecasts. Black curves represent the percentage of the persistent forecast. The abscissa is

the lead time from week 1 to week 8. See the text about the GE_reduced reforecasts.

2108 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:47 PM UTC



(Fig. 5b). Percentages rapidly drop from week 3 for

both July and October ICs, and they are below 20%

from week 4 for July ICs with little extra skill relative

to the persistence forecast, but from week 6 for

October ICs (Figs. 5c,d).

More importantly, differences of significance area

percentages between the CFSR andGLDAS reforecasts

are also evident (orange and blue bars in Fig. 5). For

instance, the GLDAS reforecasts are significant over a

greater area than the CFSR reforecasts at week 2, weeks

4 and 5 for January ICs, at week 3 for April ICs, at weeks

4 and 5 for July ICs, and at weeks 5 and 6 forOctober ICs.

In contrast, significant areas of the CFSR reforecasts

are greater than those of the GLDAS reforecasts at

week 3, weeks 7 and 8 for January ICs, at week 4 for

April ICs, at week 3, weeks 6 and 7 for July ICs, and at

week 3 and week 8 for October ICs. This demonstrates

that the prediction skill of 2-m air temperature in

CFSv2 is sensitive to the land initial states on sub-

seasonal time scales.

It is noteworthy that percentages of the GE refor-

ecasts (gray bars in Fig. 5) are equivalent to or even

greater than the higher ones between the two sets of

reforecasts for almost all lead times and all seasons. This

suggests that a multiple land surface analyses forecast

ensemble may reduce the impact of uncertainty in land

initial states, resulting in better surface temperature

prediction skill and reliability. This is similar to the

previous results that show compositing of model soil

moisture analyses improve skill over individual models

(Guo et al. 2007) and that multiocean analyses ensemble

initialization leads to better sampling of uncertainty

in ocean initial states, which improves predictive skill

and reliability of ENSO and associated Asian summer

monsoon rainfall forecasts (Zhu et al. 2012, 2013; Shin

et al. 2019).

We also analyzed a new ensemble, ‘‘GE_reduced’’

that has the same number of ensemble members as the

two sets of reforecasts (yellow bars in Fig. 5). It was

constructed by randomly taking 10 ensemble mem-

bers from the set of reforecasts with CFSR land ICs

and 10 members from the other set with GLDAS land

ICs. The GE_reduced shows higher percentages than

both CFSR and GLDAS for almost all lead weeks for

April and October ICs (Figs. 5b,c) and for more than

half of all eight lead weeks for January ICs (i.e., weeks

1 through 3, weeks 5 and 6 in Fig. 5a) and April ICs

(i.e., weeks 1–3, week 7 in Fig. 5c). Therefore, this

demonstrates that the best performance of the GE

reforecasts is not simply due to a large ensemble (i.e.,

40 members versus 20 members) but mainly due to

sampling multiple land surface analyses, which is also

evident in the spatial pattern of predictive skill over

the North America at week 3 for all seasons (two right

columns in Fig. S1).

4. Effect of soil moisture uncertainty between two
different land initial states on surface air
temperature prediction

In this section, we examine the differences of soil

moisturebetween theNOAACFSRandNASAGLDAS-2

land surface analyses and, ultimately, the prediction

of 2-m air temperature anomalies on subseasonal time

scales. Figure 6 shows a spatial distribution of volumetric

soil moisture differences in the first 10 cm below the

surface and its standard deviation for 1979–2010. For

January ICs, blue color areas in the north are clearly

separated from red color areas in the south (left panel

of Fig. 6a), indicating that CFSR land surface analysis

is wetter than GLDAS-2 north of about 308N but drier

to the south. This north–south contrast of 0–10-cm

soil moisture is still evident for April and October

ICs, but the boundary between the blue and red areas

marches northward for April ICs especially over the

North America and Europe, moves farther north to-

ward the polar regions for July ICs, and then moves

back southward for October ICs (left panels of Fig. 6).

In general, relatively larger year-by-year variations of

soil moisture inconsistencies between the two land initial

states seem to be related to themelting of snowpack in the

extratropics of the winter Hemisphere and in mountain-

ous areas such as the Himalayas and Andes (right panels

of Fig. 6). Inconsistencies in soil moisture and snow cover

are primarily driven by the precipitation forcing in the

two land surface analyses, but the other differences in soil

and vegetation classes and associated parameters may

also be responsible. It is demonstrated that the estimates

of soil moisture at 0–10 cm in the NOAA CFSR land ICs

and the NASAGLDAS-2 land ICs are quite different for

all seasons, even in their 32-yr climatologies, suggesting

large uncertainty of soil moisture initial states each year

between the CFSR and GLDAS reforecasts.

Temporal and spatial evolution of the climatological

difference of predicted soil moisture (0–10 cm) between

the CFSR and GLDAS reforecasts are presented in

Fig. 7. For January ICs, the spatial coverage and mag-

nitude of the blue area in the land ICs shows little

change with lead time whereas those of the red area in

the land ICs rapidly reduce after week 1 (Fig. 7a versus

Fig. 6a). Therefore, the CFSR reforecasts maintain

wetter soil conditions than the GLDAS reforecasts

to the north of about 308N from the initial states to

week 8. For April ICs, it is interesting to see the en-

hancement and northward expansion of red color

area over eastern Canada as well as the northeastward
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gradual propagation and expansion of red color area

over the Eurasian continent from northern Europe to

Russia continuously up to week 8 (Fig. 7b and right

column of Fig. 11). This is associated with the time

gap of snowmelt between the two reforecasts, which

is discussed below.

In boreal summer, on the other hand, the Northern

Hemisphere (NH) displays little difference of predicted

soil moisture at 0–10 cm as lead time increases, although

the CFSR reforecasts consistently predict lower (higher)

soil moisture content over the eastern United States

(Kazakhstan), compared to the GLDAS reforecasts

FIG. 6. (left) The 32-yr mean difference of volumetric soil moisture at 0–10 cm (fraction) between the land initial

conditions (ICs) of the GLDAS and CFSR reforecasts (GLDAS minus CFSR) and (right) its standard deviation

during the period of 1979–2010 for (a) January ICs, (b) April ICs, (c) July ICs, and (d) October ICs.
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(Fig. 7c). This is probably because the persistence time

scale of soil moisture in the summer Hemisphere is

shorter due to larger insolation and forecasts from the

two different analyses converge faster to the model cli-

matology. For October ICs, the CFSR reforecasts tend

to predict higher soil moisture (blue color) in high lati-

tudes of the NH (e.g., north of 608N) as seen in the initial

states while the GLDAS reforecasts show wetter soil

conditions (red color) over the eastern United States,

northern India, and eastern China, although its mag-

nitude becomes smaller with lead time (Fig. 7d).

The spatial distribution of predicted soil moisture dif-

ference at week 5 tends to persist up to week 8 (not

shown) except in the extratropics of the NH for April

ICs. It is also clearly seen that the GLDAS reforecasts

predict wetter soil for almost all seasons in the

FIG. 7. (a) The 32-yr mean difference of predicted soil moisture at 0–10 cm (fraction) between the GLDAS and CFSR reforecasts

(GLDASminus CFSR) at (left) week 1, (center) week 3, and (right) week 5 for January ICs. (b)–(d) As in (a), but for April ICs, July ICs,

and October ICs, respectively.
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Southern Hemisphere (SH) than the CFSR refor-

ecasts (Fig. 7).

We next analyze how 2-m air temperature and soil

moisture anomalies are associated with each other in the

climate forecasts system (CFSv2). Figure 8 shows cor-

relation maps between 2-m air temperature and soil

moisture anomaly (0–10 cm) in the CFSR reforecasts for

1979–2010, and it is evident that they are overall nega-

tively correlated with each other. The drier the land is,

the warmer the surface air temperature, and vice versa.

In the NH for January ICs, the negative correlation in-

tensifies in lead time over the United States and Europe

where soil moisture differences between the CFSR and

GLDAS reforecasts are less severe. On the other hand,

FIG. 8. (a) Anomaly correlation coefficient between predicted soil moisture at 0–10 cm and predicted 2-m air temperature in the CFSR

reforecasts at (left) week 1, (center) week 3, and (right) week 5 for January ICs. (b)–(d) As in (a), but for April ICs, July ICs, andOctober

ICs, respectively. Note that the correlation coefficients are calculated based on the ensemble mean of each variable.
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little correlation is found over Canada and a majority of

the Eurasian continent where soil moisture differences

appear larger but snow cover decouples soil moisture

from the atmosphere (Fig. 7a versus Figs. 6a and 8a).

Negative correlation in the NH seems to peak for April

ICs and is still relatively strong for July ICs (Figs. 8b,c).

For October ICs, little correlation is also found in high

latitudes of the NHwhere dark blue areas predominate

in Figs. 6d and 7d (Fig. 8d). In the extratropics of the

SH, negative correlations between 2-m air temperature

and soil moisture anomalies seem to be strongest for

October ICs, but weakest for July ICs. The correlation

maps in Fig. 8 may indicate the spatial pattern of land–

atmosphere coupling strength and its change in lead time

in the CFSR reforecasts, which can determine how sig-

nificant the impact of underlying soil moisture anomalies

on atmospheric predictability are, in addition to soil

moisture memory (Guo et al. 2011). Note that the pat-

terns of correlation in Fig. 8 are generally similar to those

of the GLDAS reforecasts (not shown).

To examine more quantitatively the contributions of

soil moisture differences in the land ICs to 2-m air

temperature prediction, we first divide all land grid cells

(608S–708N) into five equal size subsets, based on ab-

solute values of the soil moisture differences between

the two land surface analyses in the left panels of Fig. 6.

As a result, each grid cell is assigned to one of the five

groups according only to the magnitude of the initial soil

moisture difference without regard to its sign. In Fig. 9,

the 5th quintile of soil moisture difference for each

month is above the red curve, the 4th quintile is between

the red and orange curves, the 3rd quintile is be-

tween the orange and green curves, the 2nd quintile is

between the green and blue curve, and below the blue

curve is the 1st quintile. The initial soil moisture dif-

ferences are largest in the January land ICs, the sec-

ond largest in the April ICs, and the smallest in the

July ICs.

We hypothesize that greater difference in initial soil

moisture results in larger divergence of predicted 2-m

air temperature between the two sets of reforecasts.

Thus, we calculate the absolute value of a climatological

difference of predicted 2-m air temperature between the

CFSR andGLDAS reforecasts at each land grid cell and

then average over all grid cells of each quintile from

week 1 to week 8 (Fig. 10). Color curves in Fig. 10 are

well stratified for all ICs from the bottom to the top, that

is, from the 1st quintile with the smallest values to the

5th quintile with the largest values, validating our hy-

pothesis. One exception is for week 5 to week 7 of

January ICs (Fig. 10a). It should be noted that although

the differences of soil moisture between the two land

surface analyses are greatest for January ICs (Fig. 9), the

largest difference of predicted 2-m air temperature be-

tween the CFSR and GLDAS reforecasts appears for

April ICs (Fig. 10b). For instance, the predicted tem-

perature difference of 5th quintile at week 1 is close to

1.08C for April ICs, around about 0.88C for January and

October ICs, and about 0.78C for July ICs. For January

ICs, the value of the red curve decreases relatively more

quickly as lead time increases and becomes smaller than

that of 4th quintile (orange curve), breaking the order

FIG. 9. The 32-yr mean difference of volumetric soil moisture at 0–10 cm (fraction) between

the land initial conditions (ICs) of the GLDAS and CFSR reforecasts (GLDAS minus CFSR)

averaged over the land grid cells where lie in each quintile calculated based on its magnitude

without regard to its sign for each starting month. The abscissa is the starting month from

January to October. (See the text for more details.)
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of vertical color arrangement (i.e., the one exception

mentioned above). This is because for January ICs, the

grid cells that lie in the 5th quintile largely show little

correlation between overlying air temperature and un-

derground soil moisture anomalies, particularly in the

NH (Fig. 8a), although a quite large difference of pre-

dicted soil moisture seems long-lasting, but mainly, un-

der the snow cover (Fig. 7a).

The colored curves of the 1st–4th quintile for July and

October ICs are close to each other with much smaller

magnitude (below 0.48C), compared to those for January

and April ICs. For example, the temperature differences

of the 4th quintile (yellow curves) for July and October

ICs are approximately equal to or even less than those of

2nd quintile (blue curves) for January and April ICs for

almost all lead times up to week 8 (Fig. 10), while the

magnitudes of soil moisture differences of the 4th quintile

in the two land initial states are larger for July and

October ICs than those of the 2nd quintile for January

and April ICs (Fig. 9). This suggests that the magnitude of

predicted 2-m air temperature on subseasonal time scales

in the CFSv2 reforecasts is more sensitive to the initial soil

moisture anomalies for January andApril ICs than for July

and October ICs. This may partly be because of the fact

that most of the land areas in the NH have monsoon-like

systems in boreal summer and anomalously wet soil

moisture conditions during the postmonsoon season (i.e.,

October–November). Namely, the atmosphere is insensi-

tive to soil moisture variations in the moist, energy-limited

regimes where soil moisture content lies above a critical

value that soil moisture becomes limiting for evapotrans-

piration (e.g., Koster et al. 2009a; Seneviratne et al. 2010).

As the initial soil moisture difference becomes re-

duced in intensity with increasing lead time (left panels

of Fig. 6 versus Fig. 7), the magnitude of predicted 2-m

air temperature difference, particularly for the 5th

quintile, also declines with lead time. However, for

April ICs, the difference of predicted 2-m air temper-

ature of the 3rd–5th quintiles reintensifies beginning at

week 5 (Fig. 10b). In particular, the mean difference of

predicted 2-m air temperature at week 8 becomes

about 0.958C with a 0.28C increase from week 5 for the

5th quintile (red curve of Fig. 10b) and is about 0.88C,
the greatest magnitude for 8-week lead time, for the 4th

quintile (orange curve of Fig. 10b).

What causes April (or boreal spring) to become a

notable exception? To address this question, we further

examine temporal and spatial evolution of predicted

2-m air temperature difference for April ICs in Fig. 11.

The expansion of the orange-red area with its enhanced

magnitude from weeks 4 and 6 to week 8 is clearly seen

over Canada and Alaska and northeastern Russia, while

the blue-purple area over eastern Canada and along a

band from northern Europe to central Russia seems to

FIG. 10. (a) Area averaged magnitude of 32-yr mean difference of predicted 2-m air temperature (8C) between
the GLDAS and CFSR reforecasts (GLDAS minus CFSR) over the land grid cells of each quintile determined in

Fig. 9 for January ICs. (b)–(d) As in (a), but for April ICs, July ICs, and October ICs, respectively. The abscissa is

the lead time from week 1 to week 8. (See the text for more details.)
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remain the same with lead time (left panels of Fig. 11). If

we compare predicted snow depth at week 2 between

the CFSR and GLDAS reforecasts (Fig. 12a), it is no-

ticeable that along the yellow curves (08C of 2-m air

temperature in the GLDAS reforecasts, identical to

the green curves in Fig. 11), the snow cover of the

CFSR reforecasts is thinner than that of the GLDAS

reforecasts over northeastern Canada, western Russia,

and northern Europe where the CFSR reforecasts are

warmer at the surface (blue color in the left panel of

FIG. 11. (left) The 32-yr mean difference of predicted 2-m air temperature (8C) between the GLDAS and CFSR

reforecasts (GLDASminus CFSR) for April ICs, and (right) as in the left panels, but for predicted volumetric soil

moisture at 0–10 cm (fraction) at (a) week 2, (b) week 4, (c) week 6, and (d) week 8. Green curves denote 08C of 2-m

air temperature in the GLDAS reforecasts at each lead week.
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Fig. 11a) and drier (red color in the right panel of

Fig. 11a) than the GLDAS reforecasts. On the other

hand, over Mongolia and northern China, the CFSR

reforecasts display thicker snow cover, colder surface

air temperature and higher soil moisture than the

GLDAS reforecasts (Figs. 11a and 12a). In addition,

the snow depth of the GLDAS reforecasts is much

thinner (less than 10 cm in some places) over Alaska

and northern Canada than that of the CFSR refor-

ecasts, where the former displays warmer temperature

at the surface than the latter.

Snow cover plays a role in modulating surface air tem-

perature anomalies for the period of snowpack melting,

for example, from boreal spring to summer (e.g., Xu

FIG. 12. Predicted snow depth (shaded; m) in the extratropics of the Northern Hemisphere at (a) week 2, (b) week 4, (c) week 4, and

(d) week 8 in (left) the CFSR reforecasts, (center) the GLDAS reforecasts for April ICs, and (right) the difference between the GLDAS

and CFSR reforecasts (GLDAS minus CFSR). Yellow curves denote 08C of 2-m air temperature in the GLDAS reforecasts, identical to

the green curves in Fig. 11.
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and Dirmeyer 2011). Once the snow starts melting

and is gradually thinned, shortwave radiative insola-

tion at the surface continuously increases as albedo is

diminished, which results in warming up surface air

temperature. Since this radiative (or albedo) effect is

sensitive to snow cover change, differences of initial

snow cover between the CFSR and GLDAS refor-

ecasts give rise to quite large discrepancies of pre-

dicted 2-m air temperature in lead times of week 1

and 2. As the yellow curve propagates northward in

lead time due to increasing solar insolation during

boreal spring, it results in further snowmelt to the south

of the yellow curve (Fig. 12); the center of areas with

large 2-m air temperature difference also marches pole-

ward in week 4 and week 6 (Figs. 11b,c).

When the snow cover becomes thin enough, melt-

ing is not only accelerated by the radiative (or al-

bedo) effect, but existing differences in soil moisture

due to different land initial states can also exacer-

bate snow melt, e.g., by rendering dry soils even drier.

Negative (positive) soil moisture anomalies lead to

less (more) evaporation and therefore, more warming

up (cooling down) of the near-surface air during the

model forecast, which in turn gives rise to accelerat-

ing (slowing down) snowmelt. Consequently, if this

positive feedback of land–atmosphere coupling starts

earlier in one set of reforecasts over some specific

regions, it would more likely lead to increasing depar-

ture of predicted 2-m air temperature there, compared

to the other set of reforecasts. It is also noteworthy that

enhancement of 2-m air temperature differences over

southern Canada and Kazakhstan (i.e., orange area)

from week 6 to week 8 is accompanied by a strength-

ening of soil moisture differences (i.e., light blue area)

(Figs. 11c,d).

To exclude the positive feedback of land–atmosphere

coupling associated with melting snow, we also per-

form the same analysis as Figs. 9 and 10 only over the

land cells that are not snow covered or frozen simply

by focusing on the areas between 508S and 358N, in-

stead of between 608S and 708N (Figs. S2 and S3).

Compared to those in Fig. 9, the initial soil moisture

differences between the two land surface analyses

become much reduced for January and April ICs but

increase slightly for July and October ICs (Fig. S2),

which result in relatively little change of the initial soil

moisture differences in season. As a consequence,

predicted 2-m air temperature discrepancies between

the CFSR and GLDAS reforecasts look similar to

each other for all seasons including boreal spring,

which generally diminish over lead time (Fig. S3). This

again confirms that the effect of melting snow in boreal

spring causes predictions of 2-m air temperature to

diverge again after week 5, which is shown in Fig. 10b

(i.e., April ICs).

Additionally, we examine soil moisture differences

for a deeper layer, down to 1-m depth (i.e., the root-

zone soil moisture) between the two land surface an-

alyses and their contributions to discrepancies of 2-m

air temperature predictions over the global land grid

cells. The north–south contrasts of the climatological

root-zone soil moisture between the two land ICs are

overall similar to those of the surface layer (0–10 cm)

soil moisture for all seasons with lower interannual

variability in the former than the latter (Fig. S4 versus

Fig. 6). Compared to the surface layer soil moisture,

however, the differences of the root-zone soil mois-

ture increase to the south of about 408N, while they

become much reduced in the high latitudes of the NH,

especially for January and April ICs (left of Fig. S4

and left of Fig. 6). This indicates that relative soil

wetness (dryness) in the GLDAS-2 land ICs compared

to the CFSR land ICs, shown in the red (blue) areas,

is more enhanced (less severe) for the deeper layer of

10–100 cm than the surface layer. Compared with the

0–10-cm soil moisture difference (Fig. 9), therefore, the

absolute magnitudes of initial soil moisture difference

for the deep layer decrease for the 4th and 5th quintiles

of January andApril ICs, but increase for those quintiles

of July and October ICs (Fig. S7).

The initial differences of the root-zone soil moisture

(left of Fig. S4) seem to persist for predictions up toweek 5

(Fig. S5), in contrast to those for the surface layer that tend

to diminish gradually in lead time except in the NH

extratropics for January ICs (Fig. 7). In general, predicted

2-m air temperature anomalies are also negatively corre-

lated with predicted anomalies of the root-zone soil

moisture (Fig. S6). More importantly, this negative cor-

relation looks similar to that of the surface layer in the SH

for all seasons in terms of its magnitude and pattern, while

the predicted 2-m temperature is less correlated with the

root-zone soil moisture in the NH, especially in the ex-

tratropics for April ICs, as compared to the 0–10-cm soil

moisture (Fig. S6 versus Fig. 8). This explains main fea-

tures of area averaged absolute values of predicted 2-m air

temperature difference accompanied by the initial soil

moisture difference for the deep layer (Fig. S8), which are

consistent with what we found in Fig. 10. First, divergence

of predicted 2-m air temperature between the two sets of

reforecasts is largest at all lead times over the regions

where the greatest disparity of soil moisture ICs is ex-

hibited (i.e., red curves in Fig. S8). Second, the influence of

the initial soil moisture difference on the predicted 2-m

temperature discrepancy generally diminish over lead

time, particularly for the 5th quintile. Last, a noticeable

exception is again apparent for April ICs, that is, the
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difference of predicted 2-m temperature diverges again

after week 5 (Fig. S8b)1 due to the aforementioned posi-

tive feedback of land–atmosphere coupling associated

with melting snow in boreal spring.

5. Summary and discussion

We conducted NCEP CFSv2 ensemble reforecasts

initialized with two land surface analyses for the period

of 1979–2010. The two observation-based land initial

states are adapted from the NCEP CFS Reanalysis

(CFSR) and the NASA GLDAS-2 analysis and the

20-member ensemble means of the corresponding refor-

ecasts are referred to as theCFSRandGLDAS reforecasts,

respectively. Since atmosphere, ocean and sea ice initial

states are identical for both reforecasts, the discrepancy in

predicted 2-m air temperature between the CFSR and

GLDAS reforecasts should result solely from the difference

between the two land initial states. As a consequence, these

identical-twin sets of 32-yr CFSv2 reforecasts enable us to

evaluate the effect of theuncertainty in the land initial states

on the prediction of the atmospheric surface temperature

variability at subseasonal time scales.

We confirm that prediction skill of weekly mean 2-m

air temperature is sensitive to the uncertainty in land

initial states. When we compare regions with statisti-

cally significant skill between the CFSR and GLDAS

reforecasts, a skill disparity between the two sets of

reforecasts becomes evident from week 3 for all sea-

sons. There is no distinct characteristic that deter-

mines which set of reforecasts performs better. Rather,

the better performer varies with the lead week and

location for each season. It is interesting to note that

predictive skill in the grand ensemble reforecasts (i.e.,

all 40-member ensemble members included from both

land surface initializations) tends to be as good as that

of the better 20-member ensemble in regions where a

skill difference between the two sets of reforecasts is

noticeable for each starting month. Percentages of the

land grid cells with statistically significant skill over the

globe (608S–708N) provide more quantitative com-

parison of 2-m air temperature prediction skill from

week 1 to week 8 (Fig. 5). One set of reforecasts does

not always show higher percentage than the other.

Instead, the higher one varies with lead time for the

same starting month and is also different in seasons.

Again, percentages of skillful land area in the grand

ensemble reforecasts are equivalent to or even greater

than the higher ones between the two sets of reforecasts

for almost all lead times and all seasons. This suggests that

multiple land surface analyses initialization in a forecast

ensemble may reduce the effect of uncertainty in land

initial states, resulting in more reliable and better pre-

diction of 2-m air temperature.

It is seen that CFS Reanalysis displays much higher

soil moisture in the NH extratropics but lower soil

moisture elsewhere for almost all seasons, compared to

GLDAS-2 land reanalysis, and the boundary of the

north–south contrast in soil moisture migrates north-

ward from boreal winter to summer and moves back

southward from boreal summer to winter (Fig. 6). This

indicates that estimates of soil moisture at 0–10 cm and

the root-zone (1-m depth) between the two land ICs are

indeed quite different even in the 32-yr climatology,

implying large uncertainty of soil moisture initial states

each year between the CFSR and GLDAS reforecasts.

Area averaged absolute values of predicted 2-m air

temperature difference substantiate that over the re-

gions where the greatest disparity of soil moisture ICs is

exhibited, divergence of predicted 2-m air temperature

between the sets of reforecasts is largest at all lead times

up to week 8 (i.e., 5th quintile in Fig. 10).

Greater impact of the uncertainty in 0–10-cm soil

moisture on surface air temperature prediction on sub-

seasonal time scales is found for April ICs than January

ICs, which shows the largest magnitude of initial soil

moisture differences. It is mainly due to there being little

land–atmosphere coupling (i.e., no correlation between

soil moisture and 2-m air temperature anomalies) where

there is snow cover for January ICs. More importantly,

although the discrepancy of predicted 2-m air temper-

ature naturally decreases with lead time as forecasts lose

the memory of initial soil moisture and the model drifts

toward its climatology, a noticeable exception is found

for April ICs, which diverge again after week 5. This

feature is also obvious in the influence of the uncertainty

in the root-zone soil moisture on surface air temperature

prediction. However, the difference of predicted 2-m

temperature between the two sets of reforecasts for

April ICs shows very similar patterns to those of the

other startingmonths if the regions that are not frozen or

under the snow cover are considered (Fig. S3).

As solar insolation increases in the NH extratropics

in boreal spring, the initial difference of snow cover is

responsible for a time interval of snowmelt over some

1Divergence of predicted 2-m temperature discrepancies after

week 5 clearly appears for the 2nd and 3rd quintiles (green and blue

curves in Fig. S8b), instead of the 4th and 5th quintiles in Fig. 10.

This is because the largest differences of predicted 2-m tempera-

ture between the CFSR and GLDAS reforecasts for April ICs (left

of Fig. 11) are largely located in the purple/dark-blue areas in

Fig. 6b (left) but light-blue areas in Fig. S4b (left), roughly corre-

sponding to the 4th and 5th quintiles of the initial difference of the

0–10-cm soil moisture and the 2nd and 3rd quintiles of the root-

zone soil moisture difference, respectively.
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regions and consequently the radiative (or albedo) ef-

fect of snow cover discrepancies gives rise to relatively

faster warming of surface air temperature in one set of

reforecasts relative to the other set. Once the snow

cover melts in one set of reforecasts, soil moisture–

evaporation–surface air temperature feedback sets in,

resulting in enhanced differences of predicted 2-m air

temperature between the CFSR and GLDAS reforecasts

afterward. Therefore, in addition to inconsistencies of

soil moisture, uncertainty of snow cover in the land

initial states also influences predictability of near sur-

face air temperature in boreal spring at high latitudes

of the NH. This may suggest that more efforts should

be made to reduce the uncertainty of land surface

properties among the current land surface analyses,

which will be beneficial to improving prediction skill

of surface air temperature on subseasonal and sea-

sonal time scales.

Last, we note that the CFSR soil moisture ICs will be

more consistent with the land surface model climatology

in this forecast model than GLDAS-2 mainly because of

the use of similar soil and vegetation characteristics and

associated parameters (cf. Saha et al. 2010) as explained

in section 2,2 even when differences in variability and

means are taken into account (cf. Koster et al. 2009b).

Due to biases in coupled land–atmosphere feedback

processes in the forecast model, the most accurate and

realistic soil moisture initialization does not necessarily

result in the best forecast. Initial states with errors that

compensate for forecast model errors may actually

provide better forecasts. This is an unsatisfying strategy,

however—land data assimilation is the best way to

produce consistent initial states (Al-Yaari et al. 2017),

although data assimilation also has limitations in terms

of consistency due to the evolution in the observing

system (e.g., advent of new satellites). Validation of

forecast models regarding their coupled process be-

havior, becoming possible now due to increases in the

availability of the necessary observational data over

land (Dirmeyer et al. 2016; Balsamo et al. 2018), can lead

to informed model improvements and development,

which will further enhance the harvest of predictability

from land surface states.
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